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A method is proposed for formulating the boundary conditions at the
surface of a semibounded mass naturally exposed to solar radiation and
in contact with the surrounding atmosphere.

Under natural conditions, heat transfer at a surface
takes place in several ways at the same time (by con-
vection, radiation, evaporation). In such cases the
formulation of the boundary conditions at the surface
in one-dimensional problems of nonstationary heat
transfer presents certain difficulties.
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Fig. 1, Empirical curve (1) of diurnal
variation in solar radiation q§o (kcal/
m? - hr) [7] and its approximation using
(1): qggp = =9.47% + 1507 (curve 2). The
initial time (T = 0) corresponds to 4a.m,

A method of taking into account heat-transfer con-
ditions at the surface based on an extension of the idea
proposed in [1-3] is described below.

Under natural conditions the air temperature, the
wind speed, the solar radiation, the albedo, the tem-
perature of objects with which the surface is involved
in radiative heat exchange (TW), and other factors
varying continuously with time determine the nature
of surface heat transfer. :

An analysis of the experimental data shows that two
cases can be distinguished:

1. During the time interval 7, none of the factors
determining the heat-transfer conditions at the sur-
face vary significantly. Consequently, in first ap-
proximation they are constant and their values aver-
aged over Ty can be used in the calculations.

2. During the interval T, certain of these factors
vary along curves that have a single maximum or mini-
mum. In first approximation they are represented by
a quadratic trinomial

y=Vie +Vyr+ Vs (1)

where Vj, V,, and V3 areconstantsand0 =7 < 7f. For
example, the quantities q§o1 (Fig. 1) and T, (Fig. 2)
are well described by (1).

Thus, inthe second case we assume that some factors
are constant and others vary in accordance with (1).

In the general case the heat balance equation for
the surface is

Is = Fso1™ Fres— G —Ge- (2)

Heat-transfer theory provides various formulas

from which the quantities on the right-hand side of

Eq. (2) can be calculated with varying accuracy for

specific conditions. Thus,

Gso1= (l_ I‘) q:ol’ (3)

q.=¢ [T, 1) —T,|, (4)

where T(0, 7) is the surface temperature at time T,
The evaporation losses g depend on the difference

of the absolute humidity of the air at two heights AE
and on the wind speed v. In accordance with [4],

g. =CUAE, (5)

where ¢ is a coefficient.
The radiant heat flux ¢.oq is usually determined
from the Stefan-Boltzmann law

TO. v)7* T \*
res = &0 — . 6
s {[ 100 ] (100)} ©)
Using the Chebyshev method of best approximation,

4 4
we replace 0. 1) and &_) with binomials of the
100 100

form nT — p. When T(0,7) and T, vary over the same
temperature range, the coefficients n and p are re-
spectively equal and expression (6) is written in the
form

Gres= N EO [T(O: T)_‘Tw J- (7)

This transformation is very effective in connection
with radiative heat transfer under natural conditions,
where the range of possible values of T(0,7) and Ty
is not large. Thus, for the temperature interval (268—
308)° K the error due to this transformation does not
exceed 7%, and n = 0.96.

We substitute expressions (3), (4), (5), and (7) into
(2). For the first case considered all the quantities in
these equations are constant, then

g, =M—NT (@, 7), (8)

where
N =a +neo, (9)
M=(1—ng,+aT,+neT, +LoAE  (10)

The heat flow qg through the surface is given by

qz_}»ﬂ’.}:)ﬁ‘

¥ dx (D
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Consequently, the boundary conditions are written as

A ar0, v) _

N [ﬂ —T, r)] T
dx

N

Relation (12} is formally identical to the boundary
conditions of the third kind. Consequently, we can use
all those solutions of the heat conduction equation ob-
tained for boundary conditions of the third kind. This
is one of the principal advantages of the proposed method
of formulating the boundary conditions at the surface.

Inthe second case as indicated above, some of the quan-—
tities determining the heat transfer conditions vary
on the calculation interval. We represent these quan-
tities by means of (1) and then substitute the results
in (3), (4), (5), and (7). Solving, as before, the heat
balance equation(2) and using(11), we obtainan expres-
sionfor the boundary conditions at the surface in the form

A ‘F—% — A Bt C—DTO, 9, (13)

where A, B, C, and D are constants.

No published solutions of the heat conduction equa-
tion with condition (13) are known to the authors. How-
ever, the relatively simple form of (13) permits us to
find solutions of the heat conduction equation using the
Laplace transform method. Thus, for a semibounded
mass the solution of

FTx, 7t 1dT(x 1)

=0 14)
O0x? a ar ¢

with condition (13) and a uniform initial distribution
T(x, 0) = Ty has the following form:
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, erfcl = 2 ‘S‘ exp (—vi) d v,
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The functions erfc U and iéerfc U have been tabu-
lated; their values are given in [5].
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Fig. 2. Empirical curve (1) of air tem-

perature (deg) according to the data of

[6] and its approximation using (1): Ty =

= 0.17% — 1,57 + 7 (curve 2). The ini-
tial time corresponds to 7 p.m.

Thus, the essence of the proposed method consists
of examining the heat balance equation for the surface
with the object representing the heat flow through
that surface either as a linear function of the surface
temperature (case 1) or as the sum of a linear func-
tion of the surface temperature and a quadratic func-
tion of time (case 2). This is achieved by selecting and
transforming the formulas for the components of the
heat balance equation (2) so that only the first power
of the surface temperature is represented in those
formulas, while the time-varying quantities can be
represented by means of a quadratic trinomial.

NOTATION

T is the air temperature; v is the wind speed; q; ol is
solar radiation on a horizontal surface; r is the albedo;
A is the thermal conductivity; a is the thermal diffusi-
vity; o is the Stefan-Boltzmann constant; € is the re-
duced emissivity; o is the convective heat-transfer
coefficient; qg is the heat flow through the surface;
dgo] is the solar radiation heat flux; qpeg is the resul~
tant radiative heat flux; q; is the convective heat flux;
and q, are evaporative heat losses,
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